MTH 403: Real Analysis II
 Practice Assignment II

Conceptual problems

1. Try Problem 2-36 (page 29) from Calculus on manifolds by M. Spivak. (This problem is essential for the theorem on the existence of partition of unity.)
2. A bounded set $C \in \mathbb{R}^{n}$ is said to be Jordan measurable if ∂C has measure 0 . Show that if a set A if Jordan measurable, then given $\epsilon>0$, there exists a compact Jordan measurable set $C \subset A$ such that $\int_{A \backslash C} 1<\epsilon$. (Note that $\int_{C} 1$ is called the content or the volume of the set C.)
3. Let $C \subset V \subset \mathbb{R}^{n}$, where C is a compact set and V is an open set. Show that there exists a compact set D such that $C \subset D^{\circ} \subset D \subset V$.
4. Try Problem 3-35 (page 62) from Calculus on manifolds by M. Spivak.
5. Try Problem 3-41 (page 73) from Calculus on manifolds by M. Spivak.

Integration

We will use Q to denote a rectangle in \mathbb{R}^{n} and \mathbb{Q} to denote the set of rationals.

1. Examine the integrability of the following functions.
(a) A continuous function $f: Q \rightarrow \mathbb{R}$.
(b) An increasing function $f:[a, b] \rightarrow \mathbb{R}$.
(c) A bounded function $f: Q \rightarrow \mathbb{R}$ such that $\{x \in Q: f(x) \neq 0\}$ is a closed set of measure 0 .
(d) $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}0, & \text { if } y \neq x, \text { and } \\ 1, & \text { if } y=x\end{cases}
$$

(e) $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}0, & \text { if } x \in[0,1 / 2), \text { and } \\ 1, & \text { if } x \in[1 / 2,1]\end{cases}
$$

(f) $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}0, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \in \mathbb{Q}, y \in \mathbb{R} \backslash \mathbb{Q}, \text { and } \\ 1 / q, & \text { if } x \in \mathbb{Q}, y=p / q \text { in lowest terms }\end{cases}
$$

2. Examine whether the following subsets of \mathbb{R}^{n} are of measure 0 .
(a) The set ∂U, where $U \subset[0,1]$ that is a union of open intervals $I_{j}=\left(a_{j}, b_{j}\right)$ such that each rational in $[0,1] \cap \mathbb{Q}$ is contained in I_{j} for some j.
(b) For a continuous $f:[a, b] \rightarrow \mathbb{R}$, the set

$$
G_{f}=\{(x, f(x)): x \in[a, b]\} .
$$

(c) The set $[0,1] \cap(\mathbb{R} \backslash \mathbb{Q})$.
(d) The set $\mathbb{R}^{n-1} \times\{0\}$.
(e) Any nontrivial open subset.
(f) For a set $A \subset \mathbb{R}^{n}$ of measure 0 , the associated sets \bar{A}, A°, and ∂A.
3. In each of the following problems, assume that $f: Q \rightarrow \mathbb{R}$ is integrable.
(a) Show that $|f|$ is integrable and $\left|\int_{Q} f\right| \leq \int_{Q}|f|$.
(b) For a $g: Q \rightarrow \mathbb{R}$, if $g=f$, except at finitely many points, then g is also integrable and $\int_{Q} f=\int_{Q} g$.
(c) For an integrable $g: Q \rightarrow \mathbb{R}$ such that $f \leq g$, show that $\int_{Q} f \leq \int_{Q} g$
4. For a set $C \in \mathbb{R}^{n}$, the characteristic function on C is defined as

$$
\chi_{C}(x):= \begin{cases}1, & \text { if } x \in C, \text { and } \\ 0, & \text { otherwise }\end{cases}
$$

(a) Reading assignment: Read Theorems 3-5, 3-6, and 3-9 from Calculus on manifolds by M. Spivak.
(b) Give an example of a bounded set C of measure 0 such that $\int_{Q} \chi_{C}$ does not exist.
(c) If C is a bounded set of measure 0 and $\int_{Q} \chi_{C}$ exists, then $\int_{Q} \chi_{C}=0$.
(d) Show show that $f=\chi_{U}$ (U as in problem 2(a)) except on a set of measure 0 , then f is not integrable in $[0,1]$.
5. If $f:[a, b] \rightarrow \mathbb{R}$ is integrable and non-negative, show that, then show that $A_{f}=$ $[a, b] \times[0, f(x)]$ is Jordan-measurable with area $\int_{[a, b]} f$.
6. If $f:[a, b] \times[a, b] \rightarrow \mathbb{R}$ is continuous, then show that

$$
\int_{y \in[a, b]} \int_{x \in[a, y]} f(x, y)=\int_{x \in[a, b]} \int_{y \in[x, b]} f(x, y) .
$$

7. Let $A \subset \mathbb{R}^{2}$ be open and let $f: A \rightarrow \mathbb{R}$ be of class C^{2}. For a rectangle $Q \subset A$, use Fubini theorem to show that

$$
\int_{Q} D_{2} D_{1} f=\int_{Q} D_{1} D_{2} f
$$

8. Use Fubini Theorem to derive an expression for the volume of a set in \mathbb{R}^{3} obtained by revolving a Jordan-measurable set in the $y z$-plane about the z-axis.
9. Let $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ be continuous and let $D_{2} f$ be continuous. If $F(y)=$ $\int_{x \in[a, b]} f(x, y)$, then show that $F^{\prime}(y)=\int_{x \in[a, b]} D_{2} f(x, y)$.
10. Let $g_{1}, g_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be of class C^{1} such that $D_{1} g_{2}=D_{2} g_{1}$. If

$$
f(x, y)=\int_{t \in[0, x]} g_{1}(t, 0)+\int_{t \in[0, y]} g_{2}(x, t),
$$

then show that $D_{1} f(x, y)=g_{1}(x, y)$.
11. Reading assignment: Read the proof of Theorem 3-14 from Calculus on manifolds by M. Spivak.

